Testing Climate Models Using Infrared Spectra and GNSS Radio Occultation
نویسندگان
چکیده
The Climate Absolute Radiance and Refractivity Observatory will be a climate benchmarking mission intended to include instruments for measuring Earth’s atmospheric refractivity by GNSS radio occultation (RO), high spectral resolution thermal infrared spectra emitted from the Earth, and the spectrally resolved reflected shortwave spectrum. Climate benchmarking is necessary to establish a record that can be used to test climate models according to their predictive capability because other attempts at establishing trustworthy timeseries of satellite data have not been particularly successful. We have investigated how GNSS RO measurements and thermal infrared spectra can be used to test models’ predictive capability. GNSS RO provides a constraint on the transient sensitivity of the climate system. Infrared radiance spectra can quantify the individual longwave feedbacks of the climate system, including cloud-longwave feedbacks when used in conjunction with GNSS RO. At present, studies are limited to clear sky infrared radiation, so the next research steps should include cloudy sky infrared simulations and reflected shortwave simulations.
منابع مشابه
Evaluation of Geometric and Atmospheric Doppler for GNSS-RO Payloads
To reduce the sampling rate in global navigation satellite system (GNSS)-radio occultation receivers, it is essential to establish a suitable estimation of Doppler frequency from the received signal in the satellite onboard receiver. This receiver is usually located on low earth orbit satellite and receives GNSS satellites signal in the occultation situation. The occurred Doppler on the signal ...
متن کاملTriG - A GNSS Precise Orbit and Radio Occultation Space Receiver
The GPS radio occultation (RO) technique [1] produces measurements in the ionosphere and neutral atmosphere [2] that contribute to monitoring space weather and climate change; and improving operational weather prediction. The high accuracy of RO soundings, traceable to SI standards, makes them ideal climate benchmark observations. For weather applications, RO observations improve the accuracy o...
متن کاملA Novel Sampling Approach in GNSS-RO Receivers with Open Loop Tracking Method
Propagation of radio occultation (RO) signals through the lower troposphere results in high phase acceleration and low signal to noise ratio signal. The excess Doppler estimation accuracy in lower troposphere is very important in receiving RO signals which can be estimated by sliding window spectral analysis. To do this, various frequency estimation methods such as MUSIC and ESPRIT can be adopt...
متن کاملAnalysis of reflections in GNSS radio occultation measurements using the phase matching amplitude
It is well-known that in the presence of superrefractive layers in the lower-tropospheric inversion of GNSS radio occultation (RO) measurements using the Abel transform yields biased refractivity profiles. As such it is problematic to reconstruct the true refractivity from the RO signal. Additional information about this lower region of the atmosphere might be embedded in reflected parts of the...
متن کاملGNSS-R Altimetry Performance Analysis for the GEROS Experiment on Board the International Space Station
The GEROS-ISS (GNSS rEflectometry, Radio Occultation and Scatterometry onboard International Space Station) is an innovative experiment for climate research, proposed in 2011 within a call of the European Space Agency (ESA). This proposal was the only one selected for further studies by ESA out of ~25 ones that were submitted. In this work, the instrument performance for the near-nadir altimetr...
متن کامل